МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой общей физики / Клинских А.Ф. / 02.06.2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.О.19 Молекулярная физика

- **1. Код и наименование направления подготовки/специальности:** <u>03.03.02 Физика</u>
- **2. Профиль подготовки/специализация:** <u>Физика твёрдого тела; Физика лазерных и спектральных технологий; Ядерная и медицинская физика</u>
- 3. Квалификация выпускника: бакалавр
- 4. Форма обучения: очная
- **5. Кафедра, отвечающая за реализацию дисциплины:** <u>0801 кафедра общей физики</u> **Составители программы:**

Меремьянин Алексей Васильевич, доктор физико-математических наук

- **7. Рекомендована:** _ НМС физического факультета ВГУ, протокол № 5 от 25.05.2023г.
- 8. Учебный год: <u>2023/2024</u> Семестр(ы)/Триместр(ы): <u>2</u>

9. Цели и задачи учебной дисциплины

Целями освоения учебной дисциплины являются:

Ознакомление студентов с основными положениями теории макросистем как науки, изучающей системы, состоящие из множества частиц (газы, жидкости, твёрдые тела). В результате прохождения курса студент должен получить представление о месте термодинамики и статистической механики в современной физической картине мира, информацию об основных физических явлениях и фундаментальных термодинамики и статистической механики, современных методах исследования макросистем. Студент должен научиться самостоятельно решать и ставить задачи исследования макросистем, проводить количественную оценку физических величин, обмениваться характеризующих состояние макросистемы, искать научной информацией и оценивать степень её достоверности.

Задачи учебной дисциплины:

- овладение фундаментальными понятиями термодинамики и статистической механики;
- развитие навыков самостоятельного научного исследования физических задач;
- овладение методами постановки и решения задач изучения макросистем;
- научить умению ставить цели экспериментального исследования;
- освоение методов экспериментального исследования макросистем;
- уметь интерпретировать результаты физического эксперимента и представлять их в наглядном виде.

10. Место учебной дисциплины в структуре ООП:

Дисциплина «Молекулярная физика» относится к дисциплинам базовой части цикла Б1 основной образовательной программы подготовки бакалавров по направлению 03.03.02 «Физика». Для освоения дисциплины «Молекулярная физика» необходимы знания, умения и компетенции в объёме первого семестра курса Б1.О.12 «Математический анализ».

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесённые с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ОПК- 1	Способен применять базовые знания в области физико- математических и (или) естественных наук в сфере своей профессиональной деятельности;	ОПК-1.4	Решает типовые задачи с учётом основных понятий и общих закономерностей, сформулированных в рамках базовых дисциплин естественных наук (прежде всего химии, биологии, экологии, наук о земле и человеке)	Студент должен: знать методы решения типовых физических задач анализа термодинамических систем; уметь выбирать оптимальные способы решения задач термодинамики и молекулярной физики, оценивать адекватность найденного решения; владеть методами построения физической модели исследуемого явления.
		ОПК-1.5	Умеет использовать знания основных	Студент должен: знать основные положения термодинамики:

		ОПК-1.6	законов естественнонаучных дисциплин в профессиональной деятельности Владеет навыками использования знаний о методах	понятие о температуре и температурных шкалах, понятие о термодинамическом равновесии и процессах равновесной термодинамики, первое и второе начала термодинамики, понятие об энтропии; элементарную кинетическую теорию идеального газа и явлений переноса, распределения Максвелла и Больцмана, свойства жидкостей и растворов, понятие о фазовых переходах; уметь: применять законы термодинамики и молекулярно-кинетической теории для анализа явлений природы и технических процессов, создавать элементарные модели макросистем (газов, жидкостей и твёрдых тел) и проводить соответствующие оценочные расчёты; владеть: методами построения простых математических моделей макросистем, методами качественного анализа тепловых явлений Студент должен: знать: основные принципы современных методов исследования макросистем как
			исследования, современных концепциях, достижениях и ограничениях естественных наук при решении практических задач, структурирования естественно-научной информации	классических многочастичных систем, их достоинства, недостатки и ограничения; уметь: осуществлять поиск научной информации, оценивать её достоверность; владеть: технологиями поиска научной информации
ОПК- 2	Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальны е данные;	ОПК-2.1	Выбирает и использует соответствующие ресурсы, современные методики и оборудование для проведения экспериментальных исследований и	Студент должен: знать методы измерений термодинамических величин, таких как температура, давление, теплоёмкость; методы исследования поверхностного натяжения жидкости; уметь: проводить измерения указанных величин с помощью лабораторного оборудования; владеть: навыками проведения физического эксперимента, навыками работы с современным лабораторным оборудованием
		ОПК-2.2	Обрабатывает и представляет полученные экспериментальные данные для получения обоснованных выводов	Студент должен: знать элементарную теорию измерений; уметь выявлять источники погрешностей измерений, выбирать оптимальные способы измерений; владеть методами оценки величин погрешностей измерений, методами наглядного представления результатов измерений

12. Объем дисциплины в зачётных единицах/час. (в соответствии с учебным планом) — 6/216 **Форма промежуточной аттестации** <u>зачёт/экзамен</u>

13. Трудоёмкость по видам учебной работы

		Трудоёмкость			
Вид уче	Вид учебной работы		По семестрам		
			2-ой семестр		
Аудиторные заняти	1Я	150	150		
	лекции	48	48		
в том числе:	практические	34	34		
	лабораторные	68	68		
Самостоятельная	Самостоятельная работа		30		
в том числе: курс	в том числе: курсовая работа (проект)		_		
Форма промежуточной аттестации		36	36		
(экзамен –час.)					
	Итого:	216	216		

13.1. Содержание дисциплины

N <u>º</u> п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплин ы с помощью онлайн-курса, ЭУМК*
1.1	OCHORI I TORMO FINI OMINICA	1. Лекции	Kypo ofinici
1.1	Основы термодинамики	1. Предмет и задачи курса молекулярной физики.	<u>Курс общей</u>
		Аксиомы термодинамики.	физики -
		2. Термодинамические процессы, работа. Первое	Молекуляр ная физика
		начало термодинамики. 3. Теплоёмкость. Политропические процессы. Течение	ная физика (edu.vsu.ru)
		газа, скорость звука в газе.	(euu.vsu.ru)
		4. Второе начало термодинамики. Теорема Карно,	
		термодинамическая шкала температур. Энтропия и	
		неравенство Клаузиуса.	
		5. Метод циклов. Термодинамические потенциалы,	
		соотношения Максвелла.	
1.2	Основы статистической	6. Статистическое описание систем многих частиц.	
	механики	Основные понятия теории вероятностей.	
		7. Кинетическая теория идеального газа.	
		Классическая теория теплоёмкости.	
		8. Распределения Максвелла по скоростям.	
		9. Распределение Больцмана. Барометрическая	
		формула, атмосферы планет.	
		10. Статистический смысл второго начала	
		термодинамики и энтропия. Формула Больцмана для	
		энтропии.	
1.3	Явления переноса	11. Столкновения молекул, длина свободного	
		пробега.	
		12. Явления переноса: диффузия, вязкость,	
		теплопроводность.	
1.4	Состояния вещества	13. Ультраразреженные газы и вакуум. 14. Реальные газы. Модель газа Ван дер Ваальса.	
1.4	Состояния вещества	15. Изотермы газа Ван дер Ваальса, правила	
		Максвелла.	
		16. Жидкости, поверхностные явления.	
		17. Капиллярные явления, формула Лапласа.	

		18. Жидкие кристаллы. Твёрдые тела.	
1.5	Фазовые превращения	19. Фазы вещества. Фазовые переходы 1-го и 2-го	
	т местом программа	рода. Диаграммы состояния. Уравнение Клапейрона-	
		Клаузиуса.	
		20. Насыщенный пар. Кипение, тройные точки.	
		21. Метастабильные состояния. Условие равновесия	
		фаз.	
1.6	Растворы, смеси	22. Растворы, классификация растворов.	
1.0	т астворы, смеси	23. Осмос. Коллоидные системы.	
		23. Осмос. Коллоидные системы. 24. Диаграммы состояния бинарных смесей.	
		2. Практические занятия	
2.1	Термодинамика	1. Процессы с идеальным газом.	Курс общей
2.1	Термодинамика	2. Уравнение состояния идеального газа. Закон	физики -
		Дальтона.	<u>физики -</u> <u>Молекуляр</u>
		З. Теплоёмкость.	ная физика
			ная физика
		4. Круговые процессы.	
	NA	5. Энтропия	
2.2	Молекулярно-кинетическая	6. Кинетическая модель идеального газа.	
	теория	7. Распределения Максвелла.	
		8. Распределение Больцмана, барометрическая	
	_	формула.	
2.3	Явления переноса	9. Столкновения молекул в газе.	
		10. Вязкость.	
		11. Теплопроводность.	
2.4	Состояния вещества	12. Процессы с газом Ван дер Ваальса	
		13. Внутренняя энергия и энтропия газа Ван дер	
		Ваальса	
		14. Поверхностное натяжение	
2.5	Фазовые превращения	15. Процессы с насыщенным паром	
		16. Теплоты плавления, парообразования	
2.6	Растворы	17. Осмос, осмотическое давление.	
		3. Лабораторные занятия	
3.1	Колебания и звук	1. Исследование затухающих колебаний	Курс общей
		2. Определение скорости звука интерференционным	физики -
		методом	Молекуляр
		3. Изучение колебаний связанных систем	ная физика
3.2	Термодинамика	4. Определение отношения теплоёмкостей воздуха	·
		методом Клемана и Дезорма	
		5. Определение теплоёмкостей твёрдых тел	
3.2	Статистическая механика	6. Модель Гальтона нормального распределения	
0		7. Определение средней длины свободного пробега	
		молекул воздуха	
3.3	Явления переноса	8. Определение коэффициента вязкости глицерина	
5.5	льления перепоса	методом Стокса	
		9. Определение коэффициента вязкости методом	
		ротационного вискозиметра	
		10. Определение коэффициента вязкости	
		вискозиметром Оствальда	
3.4	Состояния вешество	11. Определение коэффициента поверхностного	
ა.4	Состояния вещества		
		натяжения воды методом компенсации давлений	
		12. Изучение температурной зависимости	
		коэффициента поверхностного натяжения воды	
		методом Кантора-Ребиндера	
		13. Определение коэффициента объёмного	
		расширения керосина.	

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование темы	Виды занятий (количество часов)				
п/п	(раздела) дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего
1	Основы термодинамики	10	10	10	5	
2	Основы статистической механики	10	6	10	5	
3	Явления переноса	6	6	16	4	
4	Состояния вещества	10	6	16	4	
5	Фазовые превращения	6	4	0	4	
6	Растворы, смеси	6	2	0	4	
7	Колебания и звук	0	0	16	4	
8						
9						
10						
	Итого:	48	34	68	30	180

14. Методические указания для обучающихся по освоению дисциплины:

Для освоения курса студенту надлежит посещать лекционные, практические и лабораторные занятия, по необходимости вести записи. Перед следующей лекцией необходимо прорабатывать дома материал, записанный на предыдущей лекции с привлечением рекомендуемой основной литературы. Для более полного освоения материала рекомендуется ознакомиться с дополнительной литературой по указанным вопросам. Необходимо решать дома полностью домашнее задание и в случае затруднений обращаться к преподавателям за разъяснениями.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник
1	Сивухин, Дмитрий Васильевич. Общий курс физики : учебное пособие для студ. физ. специальностей вузов : в 5 т. / Д.В.Сивухин .— М. : Физматлит. Т. 2: Термодинамика и молекулярная физика .— Изд. 5-е, испр. — 2014 .— 543 с. : ил. — Имен. указ., предм. указ. : с.529-537 .— ISBN 5-9221-0601-5.
2	Паршаков, Александр Николаевич. Физика в ключевых задачах. Тепловые явления и молекулярная физика: [учебное пособие] / А.Н. Паршаков.— Долгопрудный: Издательский Дом "Интеллект", 2018.— 223, [1] с.: ил. — Библиогр. в конце кн. — ISBN 978-5-91559-243-7.

б) дополнительная литература:

№ п/п	Источник
3	Иродов, Игорь Евгеньевич. Физика макросистем. Основные законы : [учебное пособие для вузов] /
	И. Е. Иродов .— 3-е изд., стер. — М. : БИНОМ. Лаборатория знаний, 2006 .— 207 с.
	Савельев, Игорь Владимирович. Курс общей физики : учебное пособие для студ. вузов, обуч. по техн. (550000) и технол. (650000) направлениям : в 3 т. / И.В. Савельев .— Изд. 4-е, стер. — СПб. : Лань, 2005
4	— ISBN 5-8114-0629-0.
4	Т.1: Механика. Молекулярная физика.— 2005.— 432 с. : ил.— (Классическая учебная литература по
	физике / редсов.: Ж.И. Алферов (пред.) [и др.]) (Учебники для вузов. Специальная литература) .— Парал.
	тит. л. англ. — Предм. указ.: 429-432 .— ISBN 5-8114-0630-4.
_	Фейнман, Р. Фейнмановские лекции по физике : В 9 вып. : Пер. с англ. / Р. Фейнман, Р. Лейтон, М. Сэндс ; Под ред. Я.А. Смородинского .— М. : Эдиториал УРСС, 2004— ISBN 5-354-00698-8.
5	[Вып. 4]: Кинетика. Теплота. Звук / Пер. с англ. А.В. Ефремова и [др.] .— 4- е изд., исправленное .— 2004
	.— 259,[1] с. : ил. — (Полный курс общей физики) .— ISBN 5-354-00702-X
	Кикоин, Абрам Константинович. Молекулярная физика : [учебное пособие для студ. вузов, обучающихся
	по физ., техн. и пед. направлениям и специальностям] / А.К. Кикоин, И.К. Кикоин .— Изд. 4-е, стер. — СПб.
6	; М.; Краснодар : Лань, 2008 .— 480 с. : ил .— (Классическая учебная литература по физике / редсов.:
	Ж.И. Алферов (пред.) [и др.]) (Учебники для вузов. Специальная литература) .— Парал. тит. л. англ. —
	Предм. указ.: с.479-480 .— ISBN 978-5-8114-0737-8.
7	Матвеев, Алексей Николаевич. Молекулярная физика : учебное пособие / А.Н. Матвеев .— Изд. 4-е, стер.
	— СПб. [и др.] : Лань, 2010. — 364 с. : ил. — (Учебники для вузов. Специальная литература) (Классическая

учебная литература по физике / ред. совет : Ж.И.Алферов (пред.) [и др.]) (Лучшие классические
учебники) .— Парал. тит. л. англ. — Предм. указ.: c.358-360 .— ISBN 978-5-8114-1007-1.

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Ресурс	
1	Электронная библиотека ВГУ https://lib.vsu.ru	
2	Электронный университет ВГУ https://edu.vsu.ru	
3	ЭБС «Лань» https://e.lanbook.com/	
4	«Университетская библиотека online» https://biblioclub.ru/	
5	«Консультант студента» http://www.studmedlib.ru/	
6	«РУКОНТ» (ИТС Контекстум) https://lib.rucont.ru/	

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных), курсовых работ и др.)

№ п/п	Источник
1	Иродов, Игорь Евгеньевич. Задачи по общей физике : учебное пособие для вузов / И. Е. Иродов . — 6-е изд., стер. — М. : БИНОМ.Лаборатория знаний, 2006 .— 431 с
2	Крыловецкий, Александр Абрамович. Задачи по физике : учебное пособие для вузов / А.А. Крыловецкий ; Воронеж. гос. ун-т .— Воронеж : ЛОП ВГУ, 2006 Ч. 3: Молекулярная физика и термодинамика .— 2006 .— 39 с.
3	Миронова, Галина Александровна. Молекулярная физика и термодинамика в вопросах и задачах : [учебное пособие для студ. вузов, обуч. по специальности ВПО 010701 - "Физика" и по направлению подгот. ВПО 010700 - "Физика"] / Г.А. Миронова, Н.Н. Брандт, А.М. Салецкий .— Санкт-Петербург; Москва; Краснодар: Лань, 2012 .— 474 с.
4	Булкин, Петр Сергеевич. Общий физический практикум. Молекулярная физика : Учебное пособие / П.С. Булкин, И.И. Попова .— М. : Изд-во Моск. ун-та, 1988 .— 215 с.
5	Механика и молекулярная физика : Лабораторный практикум / А.М. Аввакумов, А.В. Бурашников, А.С. Макаров и др. ; Чувашский государственный университет им. И.Н. Ульянова .— Чебоксары, 1982 .— 90 с.
6	Белоголовцев, Г.И. Лабораторный практикум по курсу "Физика". Раздел "Оптика и молекулярная физика" / Г.И. Белоголовцев, В.И. Куштан ; Обнин. ин-т атом. энергетики. Физэнергет. фак. — Обнинск, 1992 .— 56 с.

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ, электронное обучение (ЭО), смешанное обучение):

Лабораторные занятия проводятся в оборудованной лаборатории. Оценка домашних работ, текущий контроль и тестирование могут проводиться дистанционно с помощью системы moodle на портале <u>edu.vsu.ru</u>

18. Материально-техническое обеспечение дисциплины:

Лекционные и практические занятия проводятся в аудитории общеаудиторного фонда главного корпуса ВГУ согласно установленному расписанию; лабораторные работы проводятся в лаборатории кафедры общей физики №145 (лабораторные проводятся в группе по подгруппам до 15 человек). Лаборатория оснащена достаточным количеством рабочих мест (28 столов, из них стол для преподавателя, стол для лаборанта, 4 стола без оборудования, 22 стола с оборудованием для выполнения лабораторных работ по курсу «Молекулярная физика»; 45 стульев), компьютером для обработки результатов вычислений, комплектами для выполнения лабораторных работ по молекулярной физике:

- доска Гальтона;
- установка для изучения биений (колебаний связанных систем);
- установка для исследования затухающих колебаний;

- установка для определения длины свободного пробега молекул воздуха (2 шт.);
- вискозиметр Оствальда;
- установка для определения коэффициента внутреннего трения методом Стокса;
- ротационный вискозиметр;
- установка для определения поверхностного натяжения воды;
- установка для определения зависимости поверхностного натяжения воды от температуры (2 шт.);
- установка для определения коэффициента объёмного расширения жидкостей;
- установка для определения скорости звука интерференционным методом (генераторы звуковых частот 3Г-1);
- ТКО для лаб. «Молекулярная физика и термодинамика»: ФПТ1-1, ФПТ1-3, ФПТ1-6, ФПТ1-8, ФПТ1-10, ФПТ1-11;
- Компьютер HP ProDesk 400 G5 DM с монитором ЖК 22" BenQ BL2283 и колонками (1 шт.).

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

N <u>∘</u> π/π	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	Разделы 1.1-1.6	ОПК-1	ОПК-1.5, ОПК- 1.6	Контрольные работы
2.	Разделы 2.1-2.6	ОПК-1	ОПК-1.4	Контрольные работы
3.	Раздел 3.1-3.4	ОПК-2	ОПК-2.1,ОПК- 2.2	Вопросы к зачёту по лабораторному практикуму
	Промежуточна	ая аттестация	Перечень вопросов	
	форма контроля	– <u>экзамен, за</u>		

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1. Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

контрольные работы.

Контрольные работы проводятся аудиторно или на портале moodle. Время, отведённое на выполнение контрольной работы: 2 академических часа. При выполнении контрольной работы студент не может пользоваться справочными материалами в любом виде. Допустимо использование простого калькулятора.

Типовые задания для контрольных работ:

Тема: Основы термодинамики и статистической механики

<u>Задание 1.</u> Сколько молекул азота находится в сосуде объёмом в 1 л, если температура азота 270 $^{\circ}$ C, а давление равно 10^{-6} мм рт ст.?

Задание 2. Вычислить среднюю квадратичную скорость теплового движения молекул водорода при $0^{\circ}{
m C}$.

<u>Задание 3.</u> Восемь граммов кислорода занимают объём V = 560 л. Определить давление этого газа в том же объёме при температуре T = 820 K.

Тема: <u>Явления переноса и фазовые превращения</u>

Задание 1. Кусок льда массы $m_1=100$ г при $t_1=0^\circ$ С поместили в калориметр, в котором находилась вода массы $m_2=100$ г при температуре $t_2=60^\circ$ С. Пренебрегая теплоемкостью калориметра, найти приращение энтропии системы к моменту установления теплового равновесия.

<u>Задание 2.</u> В результате некоторого процесса вязкость идеального газа увеличилась в $\alpha=2,0$ раза, а коэффициент диффузии – в $\beta=4,0$ раза. Как и во сколько раз изменилось давление газа?

<u>Задание 3.</u> В цилиндрическом сосуде под невесомым поршнем находится насыщенный водяной пар при температуре 100° С. При медленном вдвигании поршня внешние силы совершили работу $A{=}2,0$ Дж. Определить массу сконденсировавшегося пара. Объёмом получившейся воды пренебречь.

Перечень тем лабораторных работ:

- 1. Определение декремента затухания крутильных колебаний в воде и воздухе.
- 2. Определение скорости звука методом Квинке.
- 3. Изучение колебаний связанных маятников.
- 4. Изучение закона нормального распределения на примере доски Гальтона.
- 5. Определение теплоёмкости твёрдых тел.
- 6. Определение отношения теплоёмкостей газа методом Клемана и Дезорма.
- 7. Определение средней длины свободного пробега молекул воздуха.
- 8. Определение вязкости глицерина методом Стокса
- 9. Определение вязкости жидкости методом ротационного вискозиметра.
- 10. Определение вязкости жидкости вискозиметром Оствальда.
- 11. Определение коэффициента поверхностного натяжения жидкости методом компенсации давлений.
- 12. Изучение температурной зависимости коэффициента поверхностного натяжения методом Кантора и Ребиндера.
- 13. Определение коэффициента объёмного расширения керосина.

Текущий контроль выполнения работ лабораторного практикума осуществляется путём оценивания письменного отчёта о выполнении лабораторной работы и последующего опроса. Отчёт о работе должен быть написан от руки в тетради, и содержать: название работы, цель, методы, и перечень лабораторного оборудования, раздел с кратким описанием теории изучаемого явления, после чего следует раздел, содержащий описание методики эксперимента, результаты измерений и их обработки, там же, по мере необходимости, должны быть представлены графики с результатами измерений, выполненные на миллиметровой бумаге, после чего следует раздел с выводами по работе, содержащий результаты измерений с доверительными интервалами, а также краткое заключение.

Оценка работы происходит по шкале «зачтено/не зачтено». Работа не засчитывается в случаях:

- получены неверные результаты;
- неверно оценена погрешность измерений;
- отчёт составлен с нарушениями правил составления отчёта;
- студент не в состоянии пояснить суть работы и теорию изучаемого явления.

20.2. Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

Вопросы к зачёту по лабораторному практикуму

- 1. Что называется измерением? Какие виды измерений Вам известны?
- 2. Перечислить основные характеристики измерений.
- 3. Что называется систематической погрешностью?
- 4. Изложить методику оценки случайной погрешности при прямых измерениях.
- 5. Как оценить и учесть инструментальную погрешность?
- 6. Уравнение и закон затухающих колебаний. Методы экспериментального определения коэффициента затухания.
- 7. Нормальные моды колебаний в системе связанных осцилляторов.
- 8. Биения в системе связанных осцилляторов. Условия возникновения биений.
- 9. Скорость звука в газе. Формулы Ньютона и Лапласа для скорости звука.
- 10. Теплоёмкость газа. Удельная и молярная теплоёмкости.
- 11. Первое начало термодинамики. Теплоёмкость.
- 12. Уравнение адиабатического процесса для идеального газа. Отношение теплоёмкостей.
- 13. Теплоёмкости при постоянном давлении и при постоянном объёме. Связь их с числом степеней свободы молекул газа.
- 14. Вывод рабочей формулы для отношения теплоёмкостей газа в методе Клемана и Дезорма. Источники погрешностей в данном методе.
- 15. Закон нормального распределения. Смысл функции плотности вероятности. Среднее, среднеквадратичное значение случайной величины. Дисперсия случайной величины.
- 16. Поверхностное натяжение жидкостей. Методы определения коэффициента поверхностного натяжения.
- 17. Вывести рабочую формулы для коэффициента поверхностного натяжения жидкости в методе компенсации давлений.
- 18. Вывести формулу Лапласа для давления под искривлённой поверхностью жидкости.
- 19. Температурная зависимость коэффициента поверхностного натяжения.
- 20. Как зависит от температуры поверхностное натяжение жидкости? Как и почему коэффициент поверхностного натяжения жидкости становится равным нулю?
- 21. Средняя длина свободного пробега молекул газа, основная формула, зависимость от параметров состояния газа.
- 22. Внутреннее трение в газах, формула Ньютона.
- 23. Коэффициент внутреннего трения, его физический смысл, размерность, зависимость от параметров состояния газа или жидкости.
- 24. Формула Пуазёйля. Устройство капиллярного вискозиметра, особенности метода измерений.
- 25. Температурная зависимость коэффициента вязкости жидкости, отличие её от аналогичной зависимости для газов.
- 26. Устройство и принцип действия вискозиметра Оствальда, методика работы с прибором.
- 27. Устройство и принцип действия ротационного вискозиметра, методика работы с прибором. Вывод рабочей формулы для коэффициента вязкости.
- 28. Формула Стокса, условия её применимости. Источники погрешностей в методе Стокса измерения коэффициента вязкости.
- 29. Причина теплового расширения твёрдых тел с точки зрения их молекулярного строения.
- 30. Коэффициент линейного расширения, его физический смысл, размерность, зависимость от температуры.

Вопросы к экзамену

- 1. Предмет и цели термодинамики.
- 2. Температура. Температурные шкалы.
- 3. Состояние термодинамической системы. Термодинамические параметры.
- 4. Тепловая форма движения материи. Квазистатические процессы.
- 5. Работа в термодинамике.
- 6. Понятие внутренней энергии в термодинамике.
- 7. Количество теплоты. Механический эквивалент теплоты.
- 8. Первое начало термодинамики.
- 9. Теплоёмкость.
- 10. Уравнение Майера.
- 11. Адиабатический процесс. Уравнение Пуассона.
- 12. Распространение звука в газах. Скорость истечения газа из малого отверстия.
- 13. Политропический процесс.
- 14. Второе начало термодинамики. Формулировки Томсона-Планка и Клаузиуса.
- 15. Теоремы Карно. Абсолютная термодинамическая шкала температур.
- 16. Метод циклов. Производная внутренней энергии по объёму.
- 17. Метод термодинамических функций, соотношения Максвелла.
- 18. Энтропия. Неравенство Клаузиуса.
- 19. Статистический смысл второго начала термодинамики.
- 20. Эффект Джоуля-Томсона.
- 21. Статистическая модель идеального газа.
- 22. Распределение Максвелла.
- 23. Распределение Больцмана. Барометрическая формула.
- 24. Средняя длина свободного пробега.
- 25. Явления переноса.
- 26. Модель газа Ван-дер-Ваальса.
- 27. Внутренняя энергия газа Ван-дер-Ваальса.
- 28. Изотермы газа Ван-дер-Ваальса. Правила Максвелла.
- 29. Изотермы реального газа. Метастабильные состояния.
- 30. Поверхностное натяжение.
- 31. Формула Лапласа. Капиллярные явления.
- 32. Фазовые превращения. Уравнение Клапейрона-Клаузиуса.
- 33. Фазовые диаграммы. Зависимость давления насыщенного пара от температуры.
- 34. Условие равновесия термодинамической системы. Правило фаз.
- 35. Растворы. Законы Генри и Рауля.
- 36. Осмос.
- 37. Диаграммы состояния бинарных смесей.

Описание технологии проведения

Экзамен проводится по расписанию экзаменационной сессии аудиторно или на портале moodle. Экзаменационная работа содержит два вопроса. Ответ студент предоставляет в письменном виде, после чего проводится собеседование, во время которого преподаватель может задавать вопросы или задачи по программе курса. На подготовку ответа отводится от 40 мин до 1 час. 30 мин. Время, отведённое на экзамен сообщается до начала экзамена.

Зачёт по лабораторным работам получают студенты, которым были зачтены все лабораторные работы, а также студенты, сдавшие не менее шести работ в ходе семестра, по результатам письменной работы, проведённой по расписанию занятий в конце семестра. По результатам письменной работы преподаватель может задавать вопросы по теме курса.

Оценка	Критерии оценок	
Отлично	Полное знание теоретического курса, умение решать задачи, входящие в программу курса. Полное выполнение учебной нагрузки в течении семестра (посещение практических занятий и лекций, выполнение домашних задание, выполнение контрольных работ не менее, чем на 80%).	
Хорошо	Хорошее знание теоретического курса, возможны некоторые недочёты, умение решать задачи по большей части курс. Выполнение учебной нагрузки в течении семестра не менее, чем на 60 %	
Удовлетворительно	Знание основных моментов теоретического курса, умение решать простейшие задачи по курсу. Выполнение учебной нагрузки не менее, чем на 40%.	
Неудовлетворительно	Отсутствие знания основ теоретического курса и отсутствие практических навыков. Выполнение учебной нагрузки менее, чем на 40 %.	

ЛИСТ СОГЛАСОВАНИЙ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Направление/специальность 03.03.02

Дисциплина Б1.О.19 Молекулярная физика

Профиль подготовки/специализация <u>Физика твёрдого тела; Физика лазерных и</u> спектральных технологий; Ядерная и медицинская физика

Форма обучения очная

Учебный год <u>2021/2022</u>

Ответственный исполнитель		
Заведующий кафедрой общей физики	Клинских А.Ф.	02.06.2021
Исполнители		
доцент кафедры общей физики	Меремьянин А.В.	02.06.2021
СОГЛАСОВАНО		
Куратор ООП по направлению/специальности	ифровка подписи	20
Начальник отдела обслуживания ЗНБ	расшифровка подпис	20
Программа рекомендована НМС наименование факульт протокол №от		подразделения